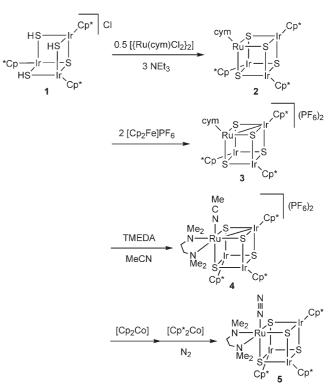
DOI: 10.1002/anie.200701044

Isolation of a Cubane-Type Metal Sulfido Cluster with a Molecular Nitrogen Ligand**

Hiroyuki Mori, Hidetake Seino, Masanobu Hidai, and Yasushi Mizobe*

In memory of Yoshihiko Ito


Nitrogenase can catalyze the reduction of the rather inert N_2 molecule to ammonia under ambient conditions. [1] Details of this enzyme have long attracted much attention, since clarification of the mechanism of its function may provide useful information for development of new industrial N_2 -fixing systems that operate under mild conditions. However, in spite of significant progress in the elucidation of the X-ray structure of the active site, that is, the FeMo cofactor (FeMoco) with an MoFe₇S₉X core in the case of Mo-containing nitrogenase, [2] it is still uncertain where and how the N_2 molecule is converted to ammonia in this mixed-metal sulfido cluster, [3] although several coordination modes of N_2 or nitrogenase substrates in this enzyme have been proposed, based mainly on theoretical studies.

In this context, isolation of well-defined metal sulfido clusters with dinitrogen ligands and elucidation of the reactivity of the coordinated N_2 are of particular interest. However, in spite of the existence of a number of stable N_2 complexes with coligands such as phosphines, thioethers, imides, cyclopentadienyls, and thiolates, [4] metal sulfido clusters with N_2 ligands are unprecedented.

Recent studies by us have focused on new and rational synthetic routes to metal sulfido clusters and resulted in the preparation of a series of hydrosulfido-bridged di- and trinuclear noble metal complexes that can serve as precursors for a variety of homo- and heterometallic cubane-type sulfido clusters. These include the incomplete cubane-type Ir sulfido hydrosulfido cluster [(Cp*Ir)₃(μ_3 -S)(μ_2 -SH)₃]Cl (1; Cp*= η^5 -C₅Me₅), which reacts with not only compounds of main group metals such as Sb and Bi, but also with those of the transition metals present in FeMo-co, Fe and Mo, to give

clusters with cubane-type Ir_3MS_4 cores (M = Sb, Bi,^[7] Fe,^[8] $Mo^{[9]}$). However, even for the last two compounds, as synthetic models of FeMo-co, N_2 binding to the Fe or Mo site has not yet been observed.

Now we have found that 1 can also incorporate a Ru fragment into its void corner to afford a cubane-type $\{Ir_3RuS_4\}$ cluster and the Ru^{II} center in this core can bind molecular N_2 to yield the first metal sulfido cluster with an N_2 ligand (Scheme 1).

Scheme 1. Synthesis of N₂-containing cluster 5 starting from 1.

[*] H. Mori, Dr. H. Seino, Prof. Dr. Y. Mizobe
Institute of Industrial Science
The University of Tokyo
Komaba, Meguro-ku, Tokyo 153-8505 (Japan)
Fax: (+81) 3-5452-6361
E-mail: ymizobe@iis.u-tokyo.ac.jp
Prof. Dr. M. Hidai
Department of Materials Science and Technology
Faculty of Industrial Science and Technology
Tokyo University of Science
Noda, Chiba 278-8510 (Japan)

[**] This work was supported by Grant-in-Aid for Scientific Research on Priority Areas (No. 14078206, "Reaction Control of Dynamic Complexes", and No. 18065005, "Chemistry of Concerto Catalysis") from the Ministry of Education, Culture, Sports, Science and Technology, Japan and by CREST of JST (Japan Science and Technology Agency). When a solution of **1** in MeCN was treated with 0.5 equiv of $[\{Ru(cym)Cl_2\}_2]$ (cym = η^6 -p-iPrC₆H₄Me) in the presence of 3 equiv of NEt₃, incorporation of the $\{Ru(cym)\}$ fragment afforded cubane-type cluster $[(Cp*Ir)_3\{Ru(cym)\}(\mu_3-S)_4]$ (**2**), which was isolated as orange crystals in 83% yield. Single-crystal X-ray analysis unambiguously confirmed formation of the cubane core (Figure 1). The absence of metal-metal bonds in the $\{Ir^{III}_3Ru^{II}\}$ framework of **2** is consistent with its 72-electron count.

Communications

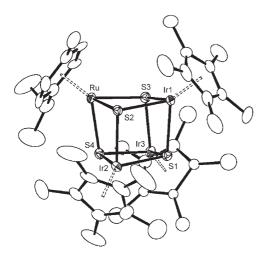


Figure 1. ORTEP view of one of the two independent molecules of 2. Hydrogen atoms and one disordered Cp* ligand attached to Ir3 are omitted for clarity (thermal ellipsoids shown at 30% probability).

Although the Ru fragment was incorporated into the cubane core successfully, the cym ligand in **2** turned out to be bound so tightly to the Ru^{II} center that its replacement by other neutral ligands hardly took place. Therefore, the Ru center was oxidized. When **2** was treated with 2 equiv of $[Cp_2Fe]PF_6$ in THF, the cationic cluster $[(Cp^*Ir)_3\{Ru(cym)\}-(\mu_3-S)_4](PF_6)_2$ (**3**) was obtained in 93 % yield as dark green crystals. The structure of the cation with a formal $\{Ir^{III}_3Ru^{IV}\}$ (or $\{Ir^{III}_2Ir^{IV}Ru^{III}\}$) core was determined by X-ray diffraction (Figure 2). The cubane core is more distorted than that of **2** due to formation of an Ru–Ir single bond with a length at 2.7890(7) Å, which is associated with a decrease of the cluster electron count by two.

As expected, substitution of the cym ligand proceeded readily for oxidized cluster **3**, and the reaction with Me₂NCH₂CH₂NMe₂ (tmeda) in MeCN at 50 °C afforded [(Cp*Ir)₃{Ru(tmeda)(MeCN)}(µ₃-S)₄](PF₆)₂ (**4**) in 78 % yield

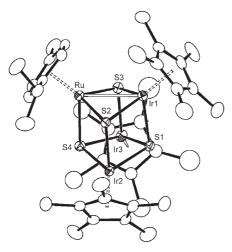


Figure 2. ORTEP view of the cation in 3. Hydrogen atoms and one disordered Cp* ligand attached to Ir3 are omitted for clarity (thermal ellipsoids shown at 30% probability).

as dark green crystals, in which the vacant sixth site of the octahedrally coordinated Ru center is occupied by MeCN, as confirmed by X-ray analysis (Figure 3). Metrical parameters associated with the $\{Ir_3RuS_4\}$ core are essentially identical to those of 3.

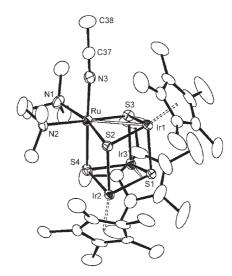


Figure 3. ORTEP view of the cation in 4. Hydrogen atoms are omitted for clarity (thermal ellipsoids shown at 50% probability).

Finally, 4 was reduced to give the cluster containing an Ru^{II} center. Reduction of 4 with 2 equiv of [Cp*₂Co] in THF/ MeCN indeed gave the desired N2-containing cluster $[(Cp*Ir)_3\{Ru(tmeda)(N_2)\}(\mu_3-S)_4]$ (5) after crystallization from hexane under N₂, albeit in low yield (ca. 5%). However, when 4 was reduced first with 1 equiv of [Cp₂Co] in THF/ MeCN, and then the one-electron-reduced species generated in the reaction mixture was reduced further with [Cp*2Co] in THF alone under N₂, 5 could be isolated as a mixture of dark orange crystals and orange solid in 82% yield by concentrating a solution of the product in hexane. X-ray analysis clearly showed the presence of an N₂ ligand bonded to the Ru^{II} center in an end-on manner (Figure 4), for which the observed N-N and Ru-N bond lengths and Ru-N-N angle are 1.06(1) Å, 1.917(7) Å, and 172.6(9)°, respectively. The IR spectrum exhibits a characteristic $v(N \equiv N)$ band at 2019 cm⁻¹.

Since the isolation of $[Ru(N_2)(NH_3)_5]X_2$ as the first N_2 complex, which shows a $v(N \equiv N)$ band at 2118 cm⁻¹ for X = Br, [11] a significant number of Ru^{II}-N₂ complexes have been reported. These include the dithiolato complex [Ru(N2)- $(PiPr_3)(SC_6H_4NMeCH_2CH_2NMeC_6H_4S)]$ (N-N 1.110(4) Å, $\tilde{v}(N \equiv N) = 2113 \text{ cm}^{-1}),^{[12]}$ the triphosphine $[RuH₂(N₂){PhP(CH₂CH₂CH₂PCy₂)₂}] (Cy = cyclohexyl; N-$ N 1.093(8) Å, $\tilde{v}(N \equiv N) = 2100 \text{ cm}^{-1}$, [13] and the pincer-ligated $[RuH(N_2)(PPh_3)\{C_6H_3-2,6-(PCy_2)_2\}]$ (N-N)complex 1.111(6) Å, $\tilde{v}(N=N) = 2134 \text{ cm}^{-1}$. To the best of our knowledge, the lowest $\tilde{\nu}(N \equiv N)$ value of 2055 cm⁻¹ was observed for the tetraamine complex [Ru(OH)(N₂)(L)]⁺ (L=2,5,9,12-tetramethyl-2,5,9,12-tetraazatridecane), and that of the related, structurally characterized tetraamine complex $[RuCl(N_2)(L')]^+$ (L' = 1,5,9,13-tetramethyl-1,5,9,13tetraazacvclohexadecane) is 2066 cm⁻¹ with an N-N bond

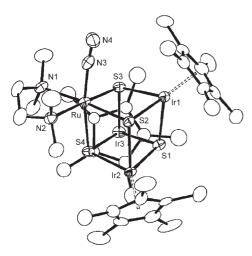


Figure 4. ORTEP view of 5. Hydrogen atoms and one disordered Cp^* ligand attached to Ir3 are omitted for clarity (thermal ellipsoids shown at 50% probability).

length of 1.01(1) Å. [16] The N–N distance in **5** is comparable to those of the above Ru^{II} complexes, but its $\tilde{\nu}(N\equiv N)$ value of 2019 cm⁻¹ is considerably lower, and even lower than that of Ru⁰ complex [Ru(N₂){P(CH₂CH₂PPh₂)₃}] with a P coligand. [17] This can be ascribed to the strong electron-donating ability of the three sulfido ligands bound to Ru.

Analogous synthesis of cubane-type sulfido clusters from incomplete cubane-type cluster has extensively been studied for Mo precursors such as $[Mo_3S_4(H_2O)_5]^{4+[18]}$ and $[(Cp'Mo)_3S_4]^+$ ($Cp'=\eta^5-C_3H_4Me^{[19]}$ or $Cp^{*[20]}$), and a number of $\{Mo_3MS_4\}$ clusters are known. However, coordination of N_2 to the M site in these cubanes has not yet been observed, even at the Ru site of the $\{(Cp^*Mo)_3RuS_4\}$ clusters, $^{[21]}$ although some of these clusters are effective in catalytic disproportionation of hydrazine. $^{[20a]}$ This difference in reactivity presumably arises from the stronger electron-donating ability of the $\{(Cp^*Ir)_3S_4\}$ moiety containing d 6 Ir III centers in 5 compared to the $\{Mo_3S_4\}$ fragment with d 2 Mo IV centers. $^{[22]}$ Studies on the reactivities of the N_2 ligand in 5 and the isolation of related N_2 clusters from 1 are now in progress.

Experimental Section

All manipulations were carried out under N_2 by standard Schlenk techniques. Solvents were dried by common methods and distilled under N_2 before use. Complex $\mathbf{1}^{[6]}$ and $[\{Ru(cym)Cl_2\}_2]^{[23]}$ were prepared according to literature methods, while other chemicals were obtained commercially and used as received.

2: NEt₃ (210 μ L, 1.51 mmol) was added to a mixture of **1** (575 mg, 0.500 mmol) and [{Ru(cym)Cl₂}₂] (153 mg, 0.250 mmol) in MeCN (50 mL) at -40 °C. The mixture was warmed gradually to room temperature and stirred continuously. After 24 h, orange microcrystals of **2** were collected by filtration, washed with MeCN, and dried in vacuo (559 mg, 83 % yield). ¹H NMR (C₆D₆): δ = 1.32 (d, J = 6.8 Hz, 6H; CH Me_2), 1.74 (s, 45 H; Cp*), 1.98 (s, 3 H; C₆H₄Me), 2.86 (sept, J = 6.8 Hz, 1 H; C HMe_2), 4.43, 4.72 ppm (d, J = 5.6 Hz, 2 H each; C₆H₄). C,H analysis (%) calcd for C₄₀H₅₉Ir₃RuS₄: C 35.70, H 4.42; found: C 35.53, H 4.39. Single crystals for X-ray crystallography were obtained by recrystallization from THF/MeCN.

3: $[Cp_2Fe]PF_6$ (271 mg, 0.819 mmol) was added to a solution of **2** (550 mg, 0.409 mmol) in THF (40 mL) at -70 °C, and the mixture was

thoroughly degassed. Then, the mixture was gradually warmed to room temperature and stirred continuously for 21 h under N_2 . Dark green microcrystals of $3\cdot1.5$ THF precipitated, which were filtered off, washed with THF, and dried in vacuo (661 mg, 93 % yield). 1 H NMR (CD₂Cl₂): δ = 1.43 (br d, 6H, CH Me_2), 1.82 (br s, 45 H, Cp*), 2.40 (br s, 3 H, C₆H₄Me), 2.89 (br sept, 1 H, C HMe_2), 5.34–6.07 ppm (br m, 4 H, C₆H₄). C,H analysis (%) calcd for C₄₆H₇₁F₁₂Ir₃O_{1.5}P₂RuS₄: C 31.68, H 4.10.; found: C 31.95, H 4.07. Single crystals for X-ray crystallography were obtained from CH₂Cl₂/hexane as CH₂Cl₂ monosolvate.

4: A solution of **3** (131 mg, 0.0750 mmol) and tmeda (12 μL, 0.080 mmol) in MeCN (10 mL) was stirred at 50 °C for 6 h. The resultant dark green solution was filtered and the filtrate was concentrated in vacuo. Addition of diethyl ether afforded **4** as dark green crystals (97 mg, 78 % yield). IR (KBr disk): $\tilde{v} = 2307 \text{ cm}^{-1}$ (\mathbb{C} = N). ¹H NMR (CD₃CN): $\delta = 1.65$ (s, 30H; Cp*), 1.78 (s, 15 H; Cp*), 1.96 (s, 3 H; MeCN), 3.03–3.10, 3.18–3.24 (m, 2 H each; CH₂CH₂), 3.06, 3.33 ppm (s, 6 H each; NMe₂). C,H,N analysis (%) calcd for C₃₈H₆₄F₁₂Ir₃N₃P₂RuS₄: C 27.51, H 3.89, N 2.53; found: C 27.36, H 3.84, N 2.59

5: A mixture containing **4** (81 mg, 0.049 mmol), [Cp₂Co] (14 mg, 0.074 mmol), MeCN (3 mL), and THF (7 mL) was stirred at room temperature for 21 h. The solvents of the resultant dark green solution were removed in vacuo, and the residue extracted with THF (10 mL). [Cp*₂Co] (31 mg, 0.094 mmol) was added to the extract, and the mixture was stirred at room temperature for 16 h. A dark orange solution was obtained, the solvents of which were removed in vacuo, and the residue was extracted with hexane. Slow concentration of the extract deposited **5**·0.5 C₆H₁₄ as a mixture of dark orange crystals and orange oily solid (56 mg, 82 % yield). IR (KBr disk): $\tilde{\nu}$ = 2019 cm⁻¹ (N \equiv N). ¹H NMR (C₆D₆ solution): 1.76 (s, 30H; Cp*), 1.91 (s, 15H; Cp*), 2.35, 2.39 ppm (s, 6H each; NMe₂). C,H,N analysis (%) calcd for C₃₉H₆₈Ir₃N₄RuS₄: C 33.48, H 4.90, N 4.00; found: C 33.27, H 5.18, N 3.74.

Single crystals of **2** and **3**·CH₂Cl₂, sealed in glass capillaries under argon, and single crystals of **4** and **5**·0.5 C_6H_{14} , coated with grease and stuck to a glass fiber, were mounted on a Rigaku Mercury-CCD diffractometer equipped with a source of graphite-monochromatized $Mo_{K\alpha}$ radiation. Diffraction studies were done at 20 °C for **2** and **3**·CH₂Cl₂ and at -140 °C for **4** and **5**·0.5 C_6H_{14} . Structure solution and refinement were carried out by using the CrystalStructure program package. [24] The positions of the non-hydrogen atoms were determined by Patterson methods (PATTY)[25] and subsequent Fourier synthesis (DIRDIF99), [26] and were refined with anisotropic thermal parameters by full-matrix least-squares techniques. Hydrogen atoms were placed at calculated positions and included at the final stages of the refinements with fixed parameters.

Received: March 9, 2007 Published online: June 4, 2007

Keywords: cluster compounds \cdot iridium \cdot nitrogen fixation \cdot ruthenium \cdot sulfur

 ^[1] a) B. K. Burgess, D. J. Lowe, Chem. Rev. 1996, 96, 2983; b) B. E. Smith, Adv. Inorg. Chem. 1999, 47, 159.

^[2] O. Einsle, F. A. Tezcan, S. Andrade, B. Schmid, M. Yoshida, J. B. Howard, D. C. Rees, *Science* 2002, 297, 1696.

^[3] a) J. C. Peters, M. P. Mehen, Activation of Small Molecules (Ed.: W. B. Tolman), Wiley-VCH, Weinheim, 2006, p. 81; b) P. L. Holland, Comprehensive Coordination Chemistry II, Vol. 8 (Eds.: J. A. McCleverty, T. J. Meyer), Elsevier, Amsterdam, 2004, p. 569; c) S. C. Lee, R. H. Holm, Chem. Rev. 2004, 104, 1135; d) Y. Mizobe, Handbook of Chalcogen Chemistry (Ed.: F. A. Devillanova), RSC, Cambridge, 2007, p. 725.

^[4] a) M. Hidai, Y. Mizobe, Chem. Rev. 1995, 95, 1115; b) B. A. Mackay, M. D. Fryzuk, Chem. Rev. 2004, 104, 385.

Communications

- [5] a) M. Hidai, Y. Mizobe, Can. J. Chem. 2005, 83, 358; b) M. Hidai, Perspectives in Organometallic Chemistry (Eds.: C. G. Screttas, B. R. Steele), RSC, Cambridge, 2003, p. 62; c) M. Hidai, S. Kuwata, Y. Mizobe, Acc. Chem. Res. 2000, 33, 46.
- [6] F. Takagi, H. Seino, Y. Mizobe, M. Hidai, Organometallics 2002, 21, 694.
- [7] A. Shinozaki, H. Seino, M. Hidai, Y. Mizobe, Organometallics 2003, 22, 4636,
- [8] P. M. Kozlowski, Y. Shiota, S. Gomita, H. Seino, Y. Mizobe, K. Yoshizawa, unpublished results.
- [9] S. Gomita, H. Seino, M. Hidai, Y. Mizobe, International Chemical Congress of Pacific Basin Societies 2005, Honolulu, USA, 2005, ENVR 184.
- [10] X-ray data for 2: $M_r = 1345.88$, $0.25 \times 0.20 \times 0.12$ mm³, triclinic, space group $P\bar{1}$, a = 11.458(2), b = 20.407(3), c = 20.800(3) Å, $\alpha = 114.068(2), \beta = 97.869(1), \gamma = 94.524(1)^{\circ}, V = 4350(1) \text{ Å}^3,$ Z = 4, $\rho_{\text{calcd}} = 2.055 \text{ g cm}^{-3}$, $R1 = 0.0404 \text{ (12935 data with } I > 10.0404 \text{ (12935 dat$ $2\sigma(I)$) and wR2 = 0.130 (all 19101 unique data) for 933 variables, GOF = 1.035. **3**·CH₂Cl₂: $M_r = 1720.74$, $0.27 \times 0.11 \times 0.11$ mm³, monoclinic, space group $P2_1/c$, a = 12.912(2), b = 24.451(3), c =16.925(2) Å, $\beta = 91.3270(8)^{\circ}$, V = 5342(1) Å³, Z = 4, $\rho_{calcd} =$ 2.140 g cm^{-3} , $R1 = 0.0380 (7235 \text{ data with } I > 2\sigma(I))$ and wR2 =0.124 (all 121 851 unique data) for 712 variables, GOF = 1.021. 4: $M_{\rm r} = 1658.84, 0.30 \times 0.15 \times 0.05 \, {\rm mm}^3, \text{ monoclinic, space group}$ P2/c, a = 20.636(3), b = 11.389(2), c = 21.060(3) Å, $\beta =$ 94.6928(7), $\gamma = 94.524(1)^{\circ}$, $V = 4933(1) \text{ Å}^3$, Z = 4, $\rho_{\text{calcd}} =$ 2.233 g cm⁻³, R1 = 0.0396 (8115 data with $I > 2\sigma(I)$) and wR2 =0.122 (all 11278 unique data) for 670 variables, GOF = 1.026. $5.0.5 \,\mathrm{C_6 H_{14}}$: $M_r = 1398.96$, $0.14 \times 0.08 \times 0.06 \,\mathrm{mm^3}$, monoclinic, space group C2/c, a = 42.677(7), b = 10.806(2), c = 22.326(4) Å, $\beta = 117.2910(5)^{\circ}$, $V = 9143(3) \text{ Å}^3$, Z = 8, $\rho_{\text{calcd}} = 2.031 \text{ g cm}^{-3}$, R1 = 0.0443 (6974 data with $I > 2\sigma(I)$) and wR2 = 0.127 (all 10462 unique data) for 505 variables, GOF=1.033. CCDC-633248, -633249, -639460, and -633251 (2, 3, 4, and 5, respectively) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam. ac.uk/data_request/cif.
- [11] A. D. Allen, C. V. Senoff, J. Chem. Soc. Chem. Commun. 1965, 621.
- [12] D. Sellmann, B. Hautsch, A. Rösler, F. W. Heinemann, Angew. Chem. 2001, 113, 1553; Angew. Chem. Int. Ed. 2001, 40, 1505.

- [13] G. Jia, D. W. Meek, J. C. Gallucci, Inorg. Chem. 1991, 30, 403.
- [14] D. Amoroso, A. Jabri, G. P. A. Yap, D. G. Gusev, E. N. dos Santos, D. E. Fogg, Organometallics 2004, 23, 4047.
- [15] T. Takahashi, K. Hiratani, E. Kimura, Chem. Lett. 1993, 1329.
- [16] W.-H. Chiu, C.-M. Che, T. C. W. Mak, Polyhedron 1996, 15, 4421.
- [17] R. Osman, D. I. Pattison, R. N. Perutz, C. Bianchini, J. A. Casares, N. Peruzzini, J. Am. Chem. Soc. 1997, 119, 8459.
- [18] a) T. Shibahara, Adv. Inorg. Chem. 1991, 37, 143; b) R. Hernandez-Molina, M. N. Sokolov, A. G. Sykes, Acc. Chem. Res. 2001, 34, 223.
- [19] a) K. Herbst, P. Zanello, M. Corsini, N. D'Amelio, L. Dahlenburg, M. Brorson, Inorg. Chem. 2003, 42, 974; b) K. Herbst, M. Monari, M. Brorson, Inorg. Chem. 2001, 40, 2979; c) K. Herbst, B. Rink, L. Dahlenburg, M. Brorson, Organometallics 2001, 20, 3655.
- [20] a) I. Takei, K. Dohki, K. Kobayashi, T. Suzuki, M. Hidai, Inorg. Chem. 2005, 44, 3768; b) I. Takei, K. Suzuki, Y. Enta, K. Dohki, T. Suzuki, Y. Mizobe, M. Hidai, Organometallics 2003, 22, 1790.
- [21] I. Takei, K. Kobayashi, K. Dohki, S. Nagao, Y. Mizobe, M. Hidai, Chem. Lett. 2007, 36, 546.
- [22] A recent DFT study on the cubane-type {Ru^{II}₂Mo^{IV}₂S₄} cluster suggested the importance of reduction of the cluster core for increasing the stability of a potential M-N₂ bond: K. Yoshizawa, N. Kihara, Y. Shiota, H. Seino, Y. Mizobe, Bull. Chem. Soc. Jpn. 2006, 79, 53.
- [23] M. A. Bennett, A. K. Smith, J. Chem. Soc. Dalton Trans. 1974, 233.
- [24] CrystalStructure 3.8.0: Crystal Structure Analysis Package, Rigaku and Rigaku/MSC, 2000-2006. CRYSTALS Issue 10: D. J. Watkin, C. K. Prout, J. R. Carruthers, P. W. Betteridge, Chemical Crystallography Laboratory, Oxford, UK.
- [25] PATTY: P. T. Beurskens, G. Admiraal, G. Beurskens, W. P. Bosman, S. Garcia-Granda, R. O. Gould, J. M. M. Smits, C. Smykall, The DIRDIF program system, Technical Report of the Crystallography Laboratory, University of Nijmegen, The Netherlands, 1992.
- [26] DIRDIF99: P. T. Beurskens, G. Admiraal, G. Beurskens, W. P. Bosman, R. de Gelder, R. Israel, J. M. M. Smits, The DIRDIF-99 program system; Technical Report of the Crystallography Laboratory: University of Nijmegen, The Netherlands, 1999.

5434